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Stochastic Modeling of Temperature:
an Empirical Study with Austrian data

Abstract
In this paper we analyse stochastic processes for modeling daily mean tempera-

ture. We consider a mean-reverting Ornstein Uhlenbeck process with different volatil-
ity functions. The models are fitted to daily observations in the period from January
1, 1969 to December 31, 2007 at the airport Graz (Thalerhof). We compare the tem-
peratures simulated by the models, which differ essentially in their volatility functions,
with the observed temperature in the year 2008. The results could be used as a basis
for pricing temperature derivatives.

Key words: Ornstein Uhlenbeck process, mean-reverting, volatility

1 Introduction

Weather has an essential influence on many business activities. Regarding for instance
energy production, weather has an enourmous impact on profits and losses, because the
demand for energy (electricity, gas) is highly correlated with the temperature. Therefore,
a market for trading financial contracts based on temperature events has emerged in the
last decade. Most of these contracts depend on certain temperature conditions, called
weather derivatives and more particularly temperature derivatives. The contracts are a
new type of securities and differ from insurance contracts. If an insurance owner claims a
loss, he has to prove that a loss has occurred on his insured title. Another characteristic
of traditional insurance contracts is that they are not geared to cover monetary losses as
a consequence of temperature variation, but rather losses as a consequence of extreme
weather conditions e.g. floods and drought.
On the contrary, weather derivatives are a valuable tool for managing risk, because they
tend to reduce the risk caused by temperature variations. A typical example, already
mentioned above, is an energy producer, for whom warm weather during the winter or low
temperature during the summer may incur significant losses in earnings. The enterprise
may buy a temperature derivative to compensate the losses if the temperature is too high
or too low during the according season. Clearly, the enterprise has to pay for this contract,
namely the premium charged by the counterparty of the contract. If the summer is too
cold or the winter too warm, a contract could cover all, or a part of the incurred losses
caused of temperature variation. If the seasons are not atypical, the enterprise will only
lose the premium paid for the contract. There are many different structures of weather
derivatives and they often depend on the needs of the investor.
Standardized weather derivatives are traded at the Chicago Mercantile Exchange (CME)1.

1http://www.cmegroup.com
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The market for weather derivatives exists since 1999 and there are two different classes of
standardized contracts: temperature futures and options on temperature futures. All of
them are linked to one of the following indices: HDD, CDD or CAT (see [3], [10]). The
indices are based on measurement locations in the USA, Canada, Europe and Asia.
Especially in Europe, where the weather market is growing, there already exists another
enterprise which offers weather derivative contracts, namely Celsius Pro2. In addition
to the regulated standardizied market, there also exists an unregulated market, the so
called over-the-counter (OTC) market. Nevertheless, in Austria temperature derivative
contracts are rare.
Therefore, the objective of this paper is an analysis and collection of different stochastic
temperature models which are considered in different papers in the literature and to apply
them to temperature data from Graz Airport (Thalerhof). In the next section we take a
look at the temperature data, before we start with the description of the models. In the
end we simulate the different models and compare the simulated paths with the observed
temperature.

2 Weather data

In this section, we consider the data set of temperature, which we got from ZAMG (Zen-
tralanstalt für Meteorologie und Geodynamik) for the weather station located at the air-
port of Graz (Thalerhof). The data set consists of daily mean temperature3 in the period
January 1, 1961 until February 16, 2009, resulting in 17579 observations. The data set
includes leap days entries, which we will not consider in the later explanations.

To construct the different models we only use the data set until December 31, 2007,
because from January 1, 2008 until February 16, 2009 we want to compare observed with
modeled temperature. This simulation should give us information about the quality of
the different models. Furthermore, there are no missing values in the data set. If we take
a look at the histogram of the daily average temperature (Figure 1), it indicates, that
the data are not normally distributed. The Shapiro Wilk test also rejects normality. The
figure shows us a left or negative skewness and a negative kurtosis, which is confirmed in
Table 1. This result is caused by the cold and warm seasons in Austria.
It will be reasonable to assume normal distribution, because the histogram of the daily
temperature differences (Figure 2) suggests a certain form of normal distribution. Though,
small differences in the daily mean temperature will be underestimated. Nevertheless the
temperature process should follow a Brownian Motion. (see also: section 6.4).

2http://www.celsiuspro.com
3usually defined to be the average of the maximum and minimum temperature over a 24h-time horizon

for the specific date
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Figure 1: Histogram of daily mean temperature from Graz in the period from January 1,
1961 until December 31, 2007

Figure 2: Histogram of the daily temperature differences from Graz in the period from
January 1, 1961 until December 31, 2007

5
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Minimum Maximum Mean Skewness Kurtosis
-20.3 28.5 9.4 -0.26 -0.81

Table 1: Summary

Figure 3: Observed daily mean temperature from Graz in the period from January 1, 1998
until December 31, 2007, together with the regression line.

The temperature varies between -7 degrees in the winter and about 23 degrees during the
summer, as we can see in Figure 3. It is obvious that the temperature process should be a
mean-reverting process with seasonality. To shape the seasonal dependence it is possible
to use a trigonometric function (e.g. Sine or Cosine). A simple regression model (Table
2) shows that a weak positive, significant, linear trend exists. (in the considered period
the daily mean temperature increased by about 3.18 degrees)

Intercept Slope
7.81 0.000185

Table 2: Values of the linear regression model

There are several realistic reasons for the increase, for example global warming or the
urban heating4 or especially for us, the increase of flights at the airport.(see [11])

4temperature rises in areas nearby big cities
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3 General assumptions for the models

Now we introduce some general assumptions, which are valid for all considered models. Let
(Ω,F ,P) be a probability space with a filtration {Ft}t≥0. Let us express the temperature
as the solution of the following stochastic differential equation (SDE):

dT (t) = θ(M − T (t))dt+ σ(t)dB(t), (1)

where T (t) is the daily mean temperature, θ the speed of reversion (constant), σ(t) the
volatility of the process, B(t) a Brownian Motion and M the mean to which the process
reverts. But (1) only reverts to M (we require E(T (t)) = M), if the parameter is constant
(see [6]). However, M = M(t) should be a deterministic function for our purpose which
models the trend and seasonality of the temperature. To obtain a stochastic process
reverting to M(t) we have to add the following term:

dM(t)
dt

Now we obtain a model for the evolution of temperature as an Ornstein Uhlenbeck process

dT (t) =
[
(θ(M(t)− T (t)) +

dM(t)
dt

]
dt+ σ(t)dB(t) (2)

whose solution is

T (t) = (T (0)−M(0))e−θt +M(t) +
∫ t

0
e−θ(t−u)σ(u)dB(u). (3)

It can be solved using the Itô-Formula [13].

4 Model A

After some general assumptions we start with the first stochastic temperature model. It is
similar to the model of Alaton [1] and our analysis will be based on the same assumptions.
We have to estimate the parameters of equation (2). As already mentioned above, M(t)
should be a deterministic function which models the trend and the seasonality. If we look
at Figure 3, the behavior of the temperature suggests (according to [1]), that choosing
M(t) as follows

M(t) = a+ bt+ c sin(ωt+ φ) (4)

with ω = 2π
365 , gives a good fit of periodic temperature data. To estimate the numeric

values of equation (4) we use ordinary least squares (OLS).
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4.1 Estimation of the mean temperature function

We can write equation (4) as follows

M(t) = a+ bt+ c(sin(ωt) cos(φ)) + c(sin(φ) cos(ωt)). (5)

It would be possible to estimate (5) using a nonlinear regression, but we transform (5) to
a linear function.

M(t) = a+ bt+ α1t1 + α2t2 (6)

with α1 = c cos(φ), α2 = c sin(φ), t1 = sin(ωt) and t2 = cos(ωt). To estimate the parame-
ters of (6) we apply OLS. We get the following numerical values:

a = 7.86 (7)

b = 0.00017 (8)

c =
α1

cos(φ)
=
−2.70
0.24

= −10.89 (9)

φ = tan−1

(
α2

α1

)
= tan−1

(
−10.55
−2.70

)
= 1.32 (10)

We obtain the following function for the mean temperature:

M(t) = 7.86 + 0.00017t− 10.89 sin
(

2πt
365

+ 1.32
)
. (11)

In this formula we see the weak significant trend already mentioned above. Figure 4
represents the observed mean temperature with M(t).

4.2 Estimation of the volatility σ

This section utilizes ideas of Alaton [1]. To estimate σ from (2), we assume that the
quadratic variation σ2 of the temperature is nearly constant during one month, while the
quadratic variation varies across the different months of the year. We assume that σ(t) is
a piecewise constant function during each month. We get 12 different values for σ(t), σ(1)
during January, σ(2) during February and so on.
For a specific month η (η = 1, . . . , 12), Nη denotes the observed temperatures T (j) j =
1, . . . , Nη during one month η. (i.e. η = 1: Nη = 31·47 ”days of January” · ”count of
years”). At first we derive one estimator for σ(η) and later we estimate a second one and
than we will take the average. The first estimator is based one the quadratic variation of
T (t) (see [2]):

σ̂2(η) =
1
Nη

Nη−1∑
j=1

(T (j + 1)− T (j))2. (12)

8
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Figure 4: Observed daily mean temperature from Graz in the period from January 1, 1998
until December 31, 2007, together with mean temperature function M(t).

By discretizing (2) we can derive the second estimator of σ(η). The discretized equation
has the following form during a given month η :

T (j) = M(j)−M(j − 1)θM(j − 1) + (1− θ)T (j − 1) + σ(η)ε(j − 1) j = 1, . . . , Nη (13)

with {ε(j)}Nη

j=1 independent standard normally distributed random variables. We can write
(13) as follows

T̂ (j) = θM(j − 1) + (1− θ)T (j − 1) + σ(η)ε(j − 1), (14)

with T̂ (j) := T (j)− (M(j)−M(j− 1)). According to Brockwell [8], an efficient estimator
is

σ̂(η)2 =
1

Nη − 2

Nη∑
j=0

(T̂ (j)− θ̂M(j − 1)− (1− θ̂)T (j − 1))2. (15)

To derive the second estimator of σ(η), we need the estimator of θ, which is the objective
of the following section.

4.3 Estimation of the mean-reverting parameter θ

According to Bibby und Sørensen [7], an unbiased estimator of θ is the zero of the equation:

Gn(θ) =
n∑
i=1

ḃ(T (i− 1); θ)
σ2(i− 1)

{T (i)− E [T (i)|T (i− 1)]} (16)

9
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where n is the number of observations and ḃ(T (i−1); θ) denotes ∂b
∂θ . To solve (16) we have

to determine E [T (i)|T (i− 1)]. Equation(3), for s ≤ t:

T (t) = (T (s)−M(s))eθt +M(t) +
∫ t

s
e−θ(t−u)σ(u)dB(u), (17)

yields
E [T (i)|T (i− 1)] = (T (i− 1)−M(i− 1))eθ +M(i). (18)

By substituting in (16) we get

Gn(θ) =
n∑
i=1

M(i− 1)− T (i− 1)
σ2(i− 1)

[
T (i)− (T (i− 1)−M(i− 1))e−θ −M(i)

]
. (19)

The unique solution of (19) is

θ̂ = − log

 ∑n
i=1

M(i−1)−T (i−1)
σ2(i−1)

[T (i)−M(i)]∑n
i=1

M(i−1)−T (i−1)
σ2(i−1)

[T (i− 1)−M(i− 1)]

 (20)

for i = 1, . . . , n. σ2(i− 1) are the associated σ2(η) estimated in (12).
Now we are able to derive the last unknown parameters of (2). The numerical value of
the estimator of θ is

θ̂ = 0.26. (21)

The estimators of σ are listed in Table 3, and we see that the volatility of the temperature
during the summer months is lower than in the winter. It is also obvious that estimator
1 and 2 are of the same magnitude for almost all months.

5 Model B

This model is a modification of Model A and was developed by Bhowan [6]. The main
difference of these two models lies in the estimation of the volatility. In Model A we argue
that the volatility of the temperature is nearly constant during a month, but varies across
the year. This means that σ is a piecewise constant function, which changes monthly.
Bowhan [6] proposes to apply a stochastic process for the volatility. The volatility changes
randomly on a monthly basis, but is still constant during one month.

5.1 Estimation of the mean temperature function

To estimate the mean temperature function, we use the same idea as in Section 4.1. To
mention the parameters one more time:

a = 7.86 b = 0.00017 c = −10.89 φ = 1.32.

10
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Month 1st Estimation 2nd Estimation Average
January 2.74 2.74 2.74
February 2.58 2.58 2.58

March 2.70 2.70 2.70
April 2.37 2.38 2.37
May 2.31 2.32 2.32
June 2.16 2.17 2.17
July 2.04 2.05 2.05

August 1.96 1.96 1.96
September 2.12 2.12 2.12
October 2.46 2.46 2.46

November 2.71 2.71 2.71
December 2.74 2.74 2.74

Table 3: Estimators of σ

5.2 Estimation of the volatility process σ

Before we consider a stochastic mean reverting process for the volatility let us consider
Figure 5 representing the observed monthly volatility. To calculate the monthly volatility
take equation 12 and replace Nη by the number of days of the according month (i.e. 31
for January 1961 and so on), which yields to 564 different volatilities, for each month
the according value. The volatility should revert to a long term trend, that is why the
stochastic differential equation has the form,

dσ(τ) = −θσ(σ(τ)−Mσ)dτ + σσdBσ(τ). (22)

Mσ is constant and the estimated value is

M̂σ = 2.14. (23)

Two parameters remain to be estimated, namely σσ and θσ. In the case of σσ we use the
estimator of the quadratic variation

σ̂2
σ =

1
n

n−1∑
j=0

(σ(j + 1)− σ(j))2 (24)

with σ(j) the quadratic variation of the temperature during the month j. We obtain

σ̂σ = 0.51. (25)

11
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Figure 5: Observed monthly volatility of temperature from Graz in the period from Jan-
uary 1, 1998 until December 31, 2007, together with M̂σ.

θσ is estimated by a modification of (20)

θ̂σ = − log

 ∑n
i=1

Mσ−σ(i−1)
σ2(i−1)

[σ(i)−Mσ]∑n
i=1

Mσ−σ(i−1)
σ2(i−1)

[σ(i− 1)−Mσ]

 , (26)

then

θ̂σ = 1.39 (27)

5.3 Estimation of the mean-reverting parameter θ

In this model the estimation of the mean-reverting parameter is similar to Section 4.3.
Only the σ2(i− 1) must be modified. Performing the modified calculation in (20) gives

θ̂ = 0.21. (28)

6 Model C

The analysis of this last model is based on the model of Benth [3]. He proposes to model
the volatility as a truncated Fourier series. This choice leads to a seasonal volatility. The
procedure of estimating the parameters of equation (2) completely differs from Model A

12
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and B. At first we discretize the solution of the Ornstein-Uhlenbeck process (3). This
calculation yields to following term:

∆T (t) = ∆M(t)− (1− e−θ)(T (t)−M(t)) + e−θ
∫ t+1

t
e−θ(t−u)σ(u)dB(u) (29)

with ∆T (t) = T (t+ 1)− T (t). Next we approximate the stochastic integral, which yields

∆T (t) = ∆M(t)− (1− e−θ)(T (t)−M(t)) + e−θσ(t)∆B(t). (30)

This equation can be written as a time series model (AR(1)-Model) of the following form:

T̃ (t+ 1) = ρT̃ (t) + σ̃(t)ε(t) (31)

with T̃ (t) = T (t)−M(t), σ̃(t) = ρσ(t), ρ = e−θ and ε(t) i.i.d standard normally distributed.
To estimate (31) we have to follow several steps. At first we have to remove the seasonality
and the linear trend.

6.1 Estimation of the mean temperature function

We already mentioned that M(t) should be a deterministic function modeling the trend
and the seasonality. In this model we specify M(t) to be of the form

M(t) = a+ bt+ b1 + b2 cos
(

2π(t− b3)
365

)
. (32)

At the beginning we already showed that there exists a weak linear trend (see Figure 3
and Table 2). After removing the trend we can determine the seasonal part of M(t). This
yields to the following parameters of M(t):

b1 ≈ 0 b2 = −10.89 b3 = 14.55

6.2 Estimation of the mean-reverting Parameter θ

Now we use the de-trended and de-seasonalized temperature series to estimate the co-
efficient of (31). In other words, we regress todays mean temperature against those of
yesterday. The value of the mean-reverting parameter, which is significant, is

ρ = 0.80

and corresponds to
θ̂ = − ln(ρ) = 0.22.

13
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Before we estimate the volatilty σ, we take a look at the autocorrelation function (Figure
6) of the residuals of the AR(1) model of the de-trended and de-seasonalized mean temper-
ature. We observe high values of the autocorrelation for the first lags. For the higher lags
it seems that the values are varying randomly around zero. The autocorrelation function
of the sqared residuals (Figure 7) indicates the fact of time dependency. Moreover a clear
seasonal variation exists.

Figure 6: Autocorrelation function of the residuals of the mean temperature at the airport
Graz

Figure 7: Autocorrelation function of the square residuals of the mean temperature at the
airport Graz

6.3 Estimation of the volatility process σ

The estimation of the seasonal volatility of the residuals will be done in several steps.
First, we define the form of σ2(t). We already mentioned above that the volatility will be
modeled with a truncated Fourier series

σ2(t) = c+
I∑
i=1

ci sin(2iπt/365) +
J∑
j=1

dj cos(2jπt/365). (33)

14
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At first we group the residuals of the AR(1)-model in 365 groups, that means we get 47
observations for a particular date (i.e. May 1). Taking the average of the square of each
group we obtain the volatility. Next we choose (according to [3]) I = J = 4 in equation
(33). Recall

σ2(t) = σ̃2(t)/ρ2. (34)

In Figure 8 we see the empirical volatility with the fitted function. The highest volatility
occurs during the winter period, while fall and summer season have lower volatilities.
This confirms our result of the simpler model form Section 4. In Tabel 4 we see the fitted
parameters of σ2(t).

Figure 8: Empirical volatility with the fitted function σ̃(t)

c c1 d1 c2 d2 c3 c3 c4 d4

6.74 0.74 1.95 -0.18 0.77 0.15 0.18 0.14 0.26

Table 4: Estimators of σ2(t)

6.4 Non-normality

After removing the temporal phenomena in the volatility we obtain the autocorrelation
functions, which are presented in Figure 9 and Figure 10. We can see that the seasonality
in the autocorrelation function of the square residuals (Figure 10) has been removed. The
autocorrelation in the first lags is still existing. This should be an indicator to use more
refined models, but this would lead to a significant complication of later calculations of

15
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futures and options prices.
Although the histogram of the residuals (Figure 11) seems to be standard normal dis-
tributed, there still exists another problem. The Shapiro Wilk test rejects normal distri-
bution and the residuals are left skewed.
Benth and Saltyte-Benth suggest in [4] to model the residuals by generalized hyperbolic
distribution. Such models are able to capture small peaks in the center, which we see in
the histogram. This modification would lead to a Lévy Process. In [3] the authors mention
that such processes may be hard to use for pricing derivatives and they think that the
assumption of i.i.d standard normal Residuals is remarkable.

Figure 9: Autocorrelation function of the residuals of the mean temperature at the airport
Graz, after dividing out the volatility function σ̃(t)

Figure 10: Autocorrelation function of the square residuals of the mean temperature at
the airport Graz, after dividing out the volatility function σ̃(t)

7 Simulation

In this section we want to simulate the different models and compare the simulated values
with the observed temperature in the period January 1, 2008 until Febrary 16, 2009,
as already mentioned. For simulating the path we have to discretise (2) and and (22),

16
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Figure 11: Histogram of the residuals of the temperature from Graz with the standard
normal density

especially for Modell B. Using the Euler Scheme of approximation (see [12]) we obtain the
following equations

T (t+ 1) = T (t) + θ(M(t)− T (t)) +
dM(t)
dt

+ σ(τ)Y1 (35)

σ(τ) = σ(τ − 1) + θσ(Mσ − σ(τ − 1)) + σσY2 (36)

with Y1, Y2 i.i.d standard normal distributed random variables. σ(τ) in (35) for Model A
are given in Table 3 for the according month. In Model B the volatility will be simulated
using (36) for the according month. For the last Model the volatility is given by the
truncated Fourier Series (33). The other parameters and estimators are given in the
previous sections.
The simulation will be done in several steps. A simulated path will be the average of 5
separately simulated paths (i.e. a simulated path of Model A is the average of 5 separately
simulated paths of Model A). To limit the number of simulated paths to 5 is just empirical.
This assumption makes sense, because if the number is too high the simulated temperature
is too smooth and if the number is too low the variation of the path is very high. To enable
the comparison of the models, the generated normal distributed random variables will be
the same for the according run of each model (i.e. the random varaiables of the first run
of Model A, B and C are the same).
Carrying out various simulation runs shows that the solutions of the different models are
nearly the same. Furthermore, the errors between the observed and fitted values of the

17
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different models are of similar size. Models of different complexity give us nearly the same
result. It’s impossible to say which model is the most suitable for simulating the observed
temperature in the period from January 1, 2008 to February 16, 2009.
Figure 12 shows a simulated path of Model C and the observed values in the period from
January 1, 2008 to February 16, 2009.

Figure 12: Simulated Path (Model C) using the Euler Scheme, together with the observed
mean temperature in the period from January 1, 2008 to February 16, 2009

8 Conclusion and Further Research

In this work we collected different stochastic temperature models and applied them to ob-
served temperature data from Graz. These models could be a basis for pricing temperature
derivatives in Austria based on different indices. It should also be possible to construct a
spatial-temporal model for Austria or Styria on the basis of these models. Another step
could be a modification of the models to get better models for Austrian temperature data.
The use of Lévy processes could be reasonable. To advance models it might be helpful to
consider larger models where the temperature is only one of many variables.
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